

$$
\text { (59) } \begin{aligned}
g(t) & =\frac{\ln t}{t^{2}} \\
g^{\prime}(t) & =\frac{\frac{1}{2}\left(t^{3}\right)-\ln t[2 t]}{t^{4}}=\frac{t[1-2 \ln t]}{t^{4}} \\
& =\frac{1-2 \ln t}{t^{3}}=\frac{1-\ln t^{2}}{t^{3}}=\frac{\ln e-\ln t^{2}}{t^{3}} \\
& =\frac{\ln \frac{e}{t^{2}}}{t^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 61) } \begin{aligned}
y=\ln \left(\ln \left(x^{2}\right)\right. \\
\begin{aligned}
\frac{d y}{d x}=\frac{1 \cdot 2 x}{x^{8} \ln x^{2}} & =\frac{2}{x \ln x^{2}} \\
& =\frac{2}{2 x \ln x}=\frac{1}{x \ln x}
\end{aligned}
\end{aligned}=\begin{aligned}
\end{aligned} \\
&
\end{aligned}
$$

41) $\lim _{x \rightarrow 2^{-}} \ln \left[x^{2}(3-x)\right] \div 11386$
42) $g(t)=\frac{\ln t}{t^{2}}$
$g^{\prime}(t)=\frac{\frac{1}{t^{2}} \cdot t^{2}-2 t \ln t}{t^{4}}=\frac{t-2 t \ln t}{t^{43}}$

$$
\frac{1-2 \ln t}{t^{3}} \text { or } \frac{1-\ln t^{2}}{t^{3}}
$$

63)

$$
\text { 63) } \begin{aligned}
& y=\ln \sqrt{\frac{x+1}{x-1}}=\ln (x+1)^{\frac{1}{2}}-\ln (x-1)^{\frac{1}{2}} \\
&=\frac{1}{2}[\ln (x+1)-\ln (x-1)] \\
& \begin{aligned}
\frac{d y}{d x} & =\frac{1}{2}\left[\frac{1}{x+1}-\frac{1}{x-1}\right] \\
& =\frac{1}{2}\left[\frac{(x-1)-(x+1)}{(x+1)(x-1)]}\right.
\end{aligned}=-\frac{1}{\left(x^{2}-1\right)} \\
&=\frac{1}{1-x^{2}}
\end{aligned}
$$

